Segments/Dimensional¶
Data from dimensionalized tables, operating and geographic segments for example. The data behind the Calcbench Segment page www.calcbench.com/segments.
- calcbench.dimensional.dimensional(company_identifiers=[], metrics=[], start_year=None, start_period=None, end_year=None, end_period=None, period_type=PeriodType.Annual, all_history=True, trace_url=False, as_originally_reported=False)¶
Segments and Breakouts in a DataFrame
The data behind the breakouts/segment page, https://www.calcbench.com/breakout.
If there are no results an empty dataframe is returned
- Parameters:
company_identifiers (sequence) – Tickers/CIK codes. eg. [‘msft’, ‘goog’, ‘appl’, ‘0000066740’]
metrics (
Sequence
[str
]) – Specific line item to get, for instance OperatingSegmentRevenue or ConcentrationRiskPercentageCustomer, get the list @ https://www.calcbench.com/api/availableBreakouts, pass in the “databaseName”start_year (int) – first year of data to get
start_period (
Union
[Period
,Literal
[0
,1
,2
,3
,4
],None
]) – first period of data to get. 0 for annual data, 1, 2, 3, 4 for quarterly data.end_year (int) – last year of data to get
end_period (
Union
[Period
,Literal
[0
,1
,2
,3
,4
],None
]) – last period of data to get. 0 for annual data, 1, 2, 3, 4 for quarterly data.period_type (
PeriodType
) – only applicable when other period data not supplied.trace_url (
bool
) – include a column with URL that point to the source document.as_originally_reported (
bool
) – Show the first reported, rather than revised, values
- Returns:
A list of points. The points correspond to the lines @ https://www.calcbench.com/breakout. For each requested metric there will be a the formatted value and the unformatted value denote bya _effvalue suffix. The label is the dimension label associated with the values.
- Return type:
pd.DataFrame
Usage:
>>> cb.dimensional( >>> company_identifiers=cb.tickers(index="DJIA"), >>> metrics=["OperatingSegmentRevenue", "OperatingSegmentOperatingIncome"], >>> period_type="annual", >>> )
- calcbench.dimensional.dimensional_raw(company_identifiers=[], metrics=[], start_year=None, start_period=None, end_year=None, end_period=None, period_type=PeriodType.Annual, all_history=True, as_originally_reported=False)¶
Segments and Breakouts
The data behind the breakouts/segment page, https://www.calcbench.com/breakout.
- Parameters:
company_identifiers (
Sequence
[Union
[str
,int
]]) – Tickers/CIK codes. eg. [‘msft’, ‘goog’, ‘appl’, ‘0000066740’]metrics (
Sequence
[str
]) – Specific line item to get, for instance OperatingSegmentRevenue or ConcentrationRiskPercentageCustomer, get the list @ https://www.calcbench.com/api/availableBreakouts, pass in the “databaseName”start_year (
Optional
[int
]) – first year of data to getstart_period (
Union
[Period
,Literal
[0
,1
,2
,3
,4
],None
]) – first period of data to get.end_year (
Optional
[int
]) – last year of data to getend_period (
Union
[Period
,Literal
[0
,1
,2
,3
,4
],None
]) – last period of data to get.period_type (
PeriodType
) – Only applicable when other period data not supplied.all_history (
bool
) – Get data for all historyas_originally_reported (
bool
) – Show the first reported, rather than revised, values
- Return type:
Sequence
[DimensionalDataPoint
]
- Usage::
>>> cb.dimensional_raw(company_identifiers=['fdx'], >>> metrics=['OperatingSegmentRevenue'], >>> start_year=2018 >>> )